Aggregation of HSA, IgG, and Fibrinogen on Methylated Silicon Surfaces
详细信息    查看全文
文摘
Ellipsometry was used to quantify adsorption and tapping mode atomic force microscopy to study surface aggregation of human serum albumin (HSA), immunoglobulin G (IgG), and fibrinogen (Fib) adsorbed from aqueous solutions onto methylated silicon surfaces. After exposure to air the protein monolayers were spontaneously restructured, exposing disorganized areas with heterogeneity depending on the degree of surface methylation. The aggregation patterns also depended on some properties of the adsorbed protein (such as the number of contact points with the surface), but seemed to be almost independent of the adsorption time. The results indicate that aggregates were formed due to lateral reorganization on the adsorbed layer at the air-liquid interface during the drying process. The interpretation is that the heterogeneous structures result from a thermodynamically driven interaction between the hydrophobic surface and the similarly hydrophobic air. The main conclusion that can be extracted from this work is that fibrinogen (hydrophobic and large protein) interacts more irreversibly with the silicon surfaces than IgG, and much more so than HSA, which is less hydrophobic and smaller than fibrinogen.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700