CT Angiography-Fluoroscopy Fusion Imaging for Percutaneous Transapical Access
详细信息    查看全文
文摘
| Figures/TablesFigures/Tables | ReferencesReferences

Objectives

The aim of this proof-of-principle study is to validate the accuracy of fusion imaging for percutaneous transapical access (TA).

Background

Structural heart disease interventions, including TA, are commonly obtained under fluoroscopic guidance, which lacks important spatial information. Computed tomographic angiography (CTA)-fluoroscopy fusion imaging can provide the 3-dimensional information necessary for improved accuracy in planning and guidance of these interventions.

Methods

Twenty consecutive patients scheduled for percutaneous left ventricular puncture and device closure using CTA-fluoroscopy fusion guidance were prospectively recruited. The HeartNavigator software (Philips Healthcare, Best, the Netherlands) was used to landmark the left ventricular epicardium for TA (planned puncture site [PPS]). The PPS landmark was compared with the position of the TA closure device on post-procedure CTA (actual puncture site). The distance between the PPS and actual puncture site was calculated from 2 fixed reference points (left main ostium and mitral prosthesis center) in 3聽planes (x, y, and z). The distance from the left anterior descending artery at the same z-plane was also assessed. TA-related complications associated with fusion imaging were recorded.

Results

The median (interquartile range [IQR]) TA distance difference between the PPS and actual puncture site from the referenced left main ostium and mitral prosthesis center was 5.00 mm (IQR: 1.98 to 12.64 mm) and 3.27 mm (IQR: 1.88 to 11.24 mm) in the x-plane, 4.48 mm (IQR: 1.98 to 13.08 mm) and 4.00聽mm (IQR: 1.62 to 11.86 mm) in the y-plane, and 5.57 mm (IQR: 3.89 to 13.62 mm) and 4.96 mm (IQR: 1.92 to 11.76 mm) in the z-plane. The mean TA distance to the left anterior descending artery was 15.5 卤 7.8 mm and 22.7 卤 13.7 mm in the x-聽and y-planes. No TA-related complications were identified, including evidence of coronary artery laceration.

Conclusions

With the use of CTA-fluoroscopy fusion imaging to guide TA, the actual puncture site can be approximated near the PPS. Moreover, fusion imaging can help maintain an adequate access distance from the left anterior descending artery, thereby, potentially reducing TA-related complications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700