Volumetric interpretation of protein adsorption: Kinetic consequences of a slowly-concentrating interphase
详细信息    查看全文
文摘
Time-dependent energetics of blood-protein adsorption are interpreted in terms of a slowly-concentrating three-dimensional interphase volume initially formed by rapid diffusion of protein molecules into an interfacial region spontaneously formed by bringing a protein solution into contact with a physical surface. This modification of standard adsorption theory is motivated by the experimental observation that interfacial tensions of protein-containing solutions decrease slowly over the first hour to a steady-state value while, over this same period, the total adsorbed protein mass is constant (for lysozyme, 15 kDa; -amylase, 51 KDa; albumin, 66 kDa; prothrombin, 72 kDa; IgG, 160 kDa; fibrinogen, 341 kDa studied in this work). These seemingly divergent observations are rationalized by the fact that interfacial energetics (tensions) are explicit functions of solute chemical potential (concentration), not adsorbed mass. Hence, rates of interfacial tension change parallel a slow interphase-concentration effect whereas solution depletion detects a constant interphase composition within the timeframe of experiment. A straightforward mathematical model approximating the perceived physical situation leads to an analytic formulation that is used to compute time-varying interphase volume and protein concentration from experimentally-measured interfacial tensions. Derivation from the fundamental thermodynamic adsorption equation verifies that protein adsorption from dilute solution is controlled by a partition coefficient at equilibrium, as is observed experimentally at steady state. Implications of the alternative interpretation of adsorption kinetics on biomaterials and biocompatibility are discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700