Ultrasound and Microbubble-Induced Intra- and Intercellular Bioeffects in Primary Endothelial Cells
详细信息    查看全文
文摘
Recent developments in the field of ultrasound (US) contrast agents have demonstrated that these encapsulated microbubbles can not only be used for diagnostic imaging but may also be employed as therapeutic carriers for localized, targeted drug or gene delivery. The exact mechanisms behind increased uptake of therapeutic compounds by US-exposed microbubbles are still not fully understood. Therefore, we studied the effects of stably oscillating SonoVue microbubbles on relevant parameters of cellular and intercellular permeability, i.e., reactive oxygen species (ROS) homeostasis, calcium permeability, F-actin cytoskeleton, monolayer integrity and cell viability using live-cell fluorescence microscopy. US was applied at 1-MHz, 0.1 MPa peak-negative pressure, 0.2 % duty cycle and 20 Hz pulse repetition frequency to primary endothelial cells. We demonstrated increased membrane permeability for calcium ions, with an important role for H2O2. Catalase, an extracellular H2O2 scavenger, significantly blocked the influx of calcium ions. Further changes in ROS homeostasis involved an increase in intracellular H2O2 levels, protein nitrosylation and a decrease in total endogenous glutathione levels. In addition, an increase in the number of F-actin stress fibers and F-actin cytoskeletal rearrangement were observed. Furthermore, US-exposed microbubbles significantly affected endothelial monolayer integrity, but importantly, disrupted cell-cell interactions were restored within 30 min. Finally, cell viability was not affected. In conclusion, these data provide more insight in the interactions between US, microbubbles and endothelial cells, which is important for understanding the mechanisms behind US and microbubble-enhanced uptake of drugs or genes. (E-mail: ljm.juffermans@vumc.nl)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700