On projected Newton–Krylov solvers for instationary laminar reacting gas flows
详细信息    查看全文
文摘
Numerical aspects of computational modeling of chemical vapor deposition are discussed. Large sparse strongly nonlinear algebraic systems are to be solved per time step. For this, inexact Newton methods and preconditioned Krylov subspace methods are suitable. To ensure positivity of concentrations, we propose a novel approach, namely a projected inexact Newton method. Unlike the commonly used method of clipping, this conserves mass. Efficiency of several preconditionings is compared. Our numerical tests culminate in an unusually large computation, namely a three-dimensional case with 17 species and 26 reactions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700