Comparison between cucurbiturils and ¦Â-cyclodextrin interactions with cholesterol molecules present in Langmuir monolayers used as a biomembrane model
详细信息    查看全文
文摘
Specific surface techniques can probe the interaction of cholesterol (Chol) with substances that are able to host and/or sequester this biomolecule, provided that the additives are properly assembled at the interface. Reports on inclusion complexes of Chol with ¦Â-cyclodextrins exist in the literature. Here we compare the interaction of ¦Â-cyclodextrin and cucurbiturils with Chol present in Langmuir phospholipid (dipalmitoylphosphatidylcholine, DPPC) monolayers, used as a biomembrane model. Cucurbiturils, CB[n], comprise macrocyclic host molecules consisting of n glycoluril units. Classic surface pressure curves, dilatational surface viscoelasticity measurements, and fluorescence emission spectra and images obtained by time-resolved fluorescence of the corresponding Langmuir-Blodgett films have shown that homologues with 5 and 6 glycoluril units, CB[5] and CB[6], do not form inclusion complexes. Higher-order homologues, such as CB[7], are likely to complex with Chol with changes in the minimum molecular areas recorded for DPPC/Chol monolayers, the fluorescence decay lifetimes, and the dilatational surface viscosities of the monolayers generated in the presence of these molecules. Moreover, we proof the removal of cholesterol from the biomimetic interface in the presence of CB[7] by means of fluorescence spectra from the subphase support of monolayers containing fluorescent-labeled Chol.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700