Sampling-based adaptive bounding evolutionary algorithm for continuous optimization problems
详细信息    查看全文
文摘
This paper proposes a novel sampling-based adaptive bounding evolutionary algorithm termed SABEA that is capable of dynamically updating the search space during the evolution process for continuous optimization problems. The proposed SABEA adopts two bounding strategies, namely fitness-based bounding and probabilistic sampling-based bounding, to select a set of individuals over multiple generations and leverage the value information from these individuals to update the search space of a given problem for improving the solution accuracy and search efficiency. To evaluate the performance of this method, SABEA is applied on top of the classic differential evolution (DE) algorithm and a DE variant, and SABEA is compared to a state-of-the-art Distribution-based Adaptive Bounding Genetic Algorithm (DABGA) on a set of 27 selected benchmark functions. The results show that SABEA can be used as a complementary strategy for further enhancing the performance of existing evolutionary algorithms and it also outperforms DABGA. Finally, a practical problem, namely the model calibration for an agent-based simulation, is used to further evaluate SABEA. The results show SABEA’s applicability to diverse problems and its advantages over the traditional genetic algorithm-based calibration method and DABGA.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700