Low-temperature co-sintering technique for the fabrication of multi-layer functional ceramics for solid oxide fuel cells
详细信息    查看全文
文摘
The low-temperature co-sintering technique for the fabrication of the multi-layered electrolyte supported on a planar anode substrate is demonstrated for solid oxide fuel cells (SOFCs). A NiO/gadolinia-doped ceria (GDC) anode substrate is fabricated using tape casting and lamination processes, and yttria-stabilized zirconia (YSZ) bottom electrolyte and GDC top electrolyte layers are sequentially screen-printed, followed by co-sintering at 1230 °C. The electrolyte layers are successfully densified at an extremely low processing temperature by promoting the sinterability of the individual components, and a continuously graded electrolyte structure is constructed to suppress the delamination of the electrolyte films. Based on the camber analysis, the cell structure is optimized to minimize the structural distortion and eliminate the processing defects. The low-temperature co-sintering technique presented in this study is expected to widen the material selection and resolve the compatibility issues associated with high-temperature processing for the fabrication of SOFCs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700