Effects of Physical Exercise on Myocardial Telomere-Regulating Proteins, Survival Pathways, and Apoptosis
详细信息    查看全文
文摘

Objectives

The purpose of this study was to study the underlying molecular mechanisms of the protective cardiac effects of physical exercise.

Background

Telomere-regulating proteins affect cellular senescence, survival, and regeneration.

Methods

C57/Bl6 wild-type, endothelial nitric oxide synthase (eNOS)–deficient and telomerase reverse transcriptase (TERT)–deficient mice were randomized to voluntary running or no running wheel conditions (n = 8 to 12 per group).

Results

Short-term running (21 days) up-regulated cardiac telomerase activity to >2-fold of sedentary controls, increased protein expression of TERT and telomere repeat binding factor (TRF) 2, and reduced expression of the proapoptotic mediators cell-cycle–checkpoint kinase 2 (Chk2), p53, and p16. Myocardial and leukocyte telomere length did not differ between 3-week- and 6-month-old sedentary or running mice, but telomerase activity, TRF2 and TERT expression were persistently increased after 6 months and the expression of Chk2, p53, and p16 remained down-regulated. The exercise-induced changes were absent in both TERT−/− and eNOS−/− mice. Running increased cardiac expression of insulin-like growth factor (IGF)-1. Treatment with IGF-1 up-regulated myocardial telomerase activity >14-fold and increased the expression of phosphorylated Akt protein kinase and phosphorylated eNOS. To test the physiologic relevance of these exercise-mediated prosurvival pathways, apoptotic cardiomyopathy was induced by treatment with doxorubicin. Up-regulation of telomere-stabilizing proteins by physical exercise in mice reduced doxorubicin-induced p53 expression and potently prevented cardiomyocyte apoptosis in wild-type, but not in TERT−/− mice.

Conclusions

Long- and short-term voluntary physical exercise up-regulates cardiac telomere-stabilizing proteins and thereby induces antisenescent and protective effects, for example, to prevent doxorubicin-induced cardiomyopathy. These beneficial cardiac effects are mediated by TERT, eNOS, and IGF-1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700