Biomechanical evaluation of a new fixation technique for internal fixation of three-part proximal humerus fractures in a novel cadaveric model
详细信息    查看全文
文摘

Background

The optimal surgical treatment for displaced proximal humeral fractures is still controversial. A new implant for the treatment of three-part fractures has been recently designed. It supplements the existing Expert Humeral Nail with a locking plate. We developed a novel humeral cadaveric model and the existing implant and the prototype were biomechanically compared to determine their ability in maintaining interfragmentary stability.

Methods

The bone mineral density of eight pairs of cadaveric humeri was assessed and a three-part proximal humeral fracture was simulated with a Greater Tuberosity osteotomy and a surgical neck wedge ostectomy. The specimens were randomly assigned to either treatment. A bone anchor simulated part of a rotator cuff tendon pulling on the Greater Tuberosity. Specimens were initially tested in axial compression and afterward with a compound cyclic load to failure. An optical 3D motion tracking system continuously monitored the relative interfragmentary movements.

Findings

The specimen stabilized with the prototype demonstrated higher stiffness (P = 0.036) and better interfragmentary stability (P values < 0.028) than the contralateral treated with the existing implant. There was no correlation between the bone mineral density and any of the investigated variables.

Interpretation

The convenience of this new IM-nail and locking plate assembly must be confirmed in vivo but the current study provides a biomechanical rationale for its use in the treatment of three-part proximal humeral fractures. The improved stability could be advantageous in particular when medial buttress is missing, even in osteoporotic bone.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700