Energy efficient task allocation for hybrid main memory architecture
详细信息    查看全文
文摘
Compared with the conventional dynamic random access memory (DRAM), emerging non-volatile memory technologies provide better density and energy efficiency. However, current NVM devices typically suffer from high write power, long write latency and low write endurance. In this paper, we study the task allocation problem for the hybrid main memory architecture with both DRAM and PRAM, in order to leverage system performance and the energy consumption of the memory subsystem via assigning different memory devices for each individual task. For an embedded system with a static set of periodical tasks, we design an integer linear programming (ILP) based offline adaptive space allocation (offline-ASA) algorithm to obtain the optimal task allocation. Furthermore, we propose an online adaptive space allocation (online-ASA) algorithm for dynamic task set where arrivals of tasks are not known in advance. Experimental results show that our proposed schemes achieve 27.01% energy saving on average, with additional performance cost of 13.6%.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700