Numerical and experimental investigation of cold rotary forging of a 20CrMnTi alloy spur bevel gear
详细信息    查看全文
文摘
Due to the complex three-dimensional (3D) geometry and tooling design, mass production of precision spur bevel gears by machining or conventional forging technology is impeded by numerous stubborn barriers to date. Cold rotary forging, an innovative incremental metal forming process, has great potential to improve the current situation owing to its flexibility and low tool load requirement. In the present study, a sound 3D rigid-plastic finite element (FE) model of cold rotary forging of a 20CrMnTi alloy spur bevel gear is developed under the DEFORM-3D platform. To ensure the precision of the proposed FE model, a series of experiments are well performed for the identification of the mechanical properties of 20CrMnTi alloy and the realistic friction conditions prevailing at the die-workpiece interface. By utilising this FE model, the workpiece geometry is optimised with the intention of achieving a better filling of gear shape and a lower forming load requirement, and then the distribution of different field-variables such as flow velocity and effective strain are thoroughly investigated. For verification purposes, the cold rotary forging experiments of 20CrMnTi alloy spur bevel gears are subsequently conducted. Good agreement between the experimental results and the simulation ones is highlighted by comparing the gear shape after cold rotary forging and the axial forging force, which validates employed model.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700