The protein expression profile in hepatopancreas of scallop Chlamys farreri under heat stress and Vibrio anguillarum challenge
详细信息    查看全文
文摘
Heat stress and pathogen infection have been considered as the main causes for mass mortality of cultured scallops during summer. In the present study, the expression profiles of proteins in the hepatopancreas of scallop Chlamys farreri were examined to reveal the possible mechanisms of physiological responses of scallop beneath heat stress and bacterial infection. An earlier occurred and higher mortality was observed in the scallops from combination treated group (28聽掳C and an injection of Vibrio anguillarum) in comparison to those in heat stress (28聽掳C) and bacteria challenge (V.聽anguillarum injection only) group, as well as control (PBS) and blank (untreated) group. The proteins in the hepatopancreas from scallops post 6聽h of treatment were analyzed by using 2-D PAGE and ImageMaster 2D Platinum. There were total 1003 spots detected in control group, 1193 spots in heat stress group, 1263 spots in bacteria challenge group, and 1241 spots in the combination group. Fifteen protein spots expressed differentially between the combination treatment group and the bacteria challenge group were successfully identified by mass spectrometry and they were mainly classified as binding and catalytic proteins, such as endoglucanase, methylmalonate-semialdehyde dehydrogenase, xylose isomerase, tryptophanyl-tRNA synthetase, 40s ribosomal protein SA, glutathione S-transferase 4, and Mitochondrial transcription factor A, etc. These results indicated that the mortality of scallops suffered from the combination treatment was probably attributed to the impaired modulation of digestion and metabolism and ruined protein synthesis caused by heat stress together with bacteria infection. These data also provided valuable insights into the possible mechanisms of summer mortality occurrence of scallop at protein level.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700