Biofunctionalized polymer-lipid supported mesoporous silica nanoparticles for release of chemotherapeutics in multidrug resistant cancer cells
详细信息    查看全文
文摘
Multidrug resistance (MDR) is a major impediment to the success of cancer chemotherapy. A polymer-lipid supported mesoporous silica nanoparticle (PLS-MSNs) is described here to facilitate intracellular delivery of anticancer drug and enhance the antitumor efficacy against MDR breast cancer cells. By coating MSNs with a synthetic dual-functional polymer-lipid material P123-DOPE, the supported membrane acted as an intact barrier against the escape of encapsulated drugs before reaching the target cells, leading to depolymerization and triggered storm release of loaded irinotecan (CPT-11) in acidic endosomal pH of tumor cells. In addition, P123-DOPE can inhibit breast cancer resistance protein (BCPR) mediated CPT-11 efflux in drug resistant MCF-7/BCRP breast cancer cells, thus acting as a 鈥渄oor blocker鈥? Compared to free CPT-11, PLS-MSNs resulted in a maximum increase in the intracellular CPT-11 concentration (12.9-fold), had 7.1-fold higher cytotoxicity and processed a stronger cell cycle arrest in MCF-7/BCRP cells. Moreover, CPT-11 loaded PLS-MSNs showed high therapeutic performance and low toxicity in BALB/c nude mice bearing drug resistant breast tumors, with an inhibition rate of 81.2% compared to free CPT-11 treatment group. The reported PLS-MSNs provide promising applicability in future preclinical and clinical MDR cancer treatment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700