Thermal, mechanical and electrical properties of polyurethane/(3-aminopropyl) triethoxysilane functionalized graphene/epoxy resin interpenetrating shape memory polymer composites
详细信息    查看全文
文摘
Functionalized graphene (FG) was successfully synthesized by treating graphene oxide with (3-aminopropyl) triethoxysilane (KH-550) and then reduced by hydrazine hydrate. Subsequently, significant reinforcement of polyurethane/epoxy resin (PU/EP) composites in situ synthesized on the FG is prepared. Morphologic study shows that, due to the formation of chemical bonding, the FG was dispersed well in the PU/EP matrix and the mechanical performance is improved. Meanwhile, the thermal degradation temperature was enhanced almost 50 °C higher than that of PU/EP. The conductivity of PU/FG/EP nanocomposites was 82.713 × 10−6 S/m at 2.0 wt% loadings. The resulting composites exhibited 96% shape fixity, 94% shape recovery, enhanced shape recovery force to realize thermo-electric dual-responsive property. Comparing with the results in literature, the composites used in this study have shown a progress between electrical conductivity and shape memory property.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700