Practical anonymity models on protecting private weighted graphs
详细信息    查看全文
文摘
Identity disclosure control (IDC) on graph data has attracted increasing interest in security and database communities. Most existing work focuses on preventing identity disclosure derivable from certain structural information in unweighted graphs. In weighted graphs, when the weight of an edge implying relevance/association between its adjacency vertices is taken into account, this problem becomes more complex due to the diversity of weight-related information which may expose to many types of background knowledge attacks and hence significantly increases the time complexity for preventing privacy breaches. This paper systematically studies IDC in weighted graphs, which has no known solution to our knowledge, by employing elementary weight invariants as background knowledge. We propose a general anonymity model against weight-related attacks, and introduce a new utility metric based on spectral graph theory. Then we distinguish two types of practical breaches, namely volume and histogram attack, which the adversary has the knowledge of the sum and the set of adjacent weights for each vertex respectively. We propose an efficient method for volume anonymization, and a heuristic scheme for histogram anonymization which we show to be NP-hard. We show how to construct the graph under these anonymized properties to protect a graph from both attacks. Our approaches are effective in terms of efficiency and data utility preservation: run in near-quadratic time on graph size, and preserve a similar utility as the original graph. The performances of the algorithms have been validated by extensive experiments on both synthetic and real-world datasets.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700