Tensile mechanical properties of basalt fiber reinforced polymer composite under varying strain rates and temperatures
详细信息    查看全文
文摘
High-strength woven fabrics and polymers are ideal materials for use in structural and aerospace systems. It is very important to characterize their mechanical properties under extreme conditions such as varying temperatures, impact and ballistic loadings. In this present work, the effects of strain rate and temperature on the tensile properties of basalt fiber reinforced polymer (BFRP) were investigated. These composites were fabricated using vacuum assisted resin infusion (VARI). Dynamic tensile tests of BFRP coupons were conducted at strain rates ranging from 19 to 133 s−1 using a servo-hydraulic high-rate testing system. Additionally, effect of temperature ranging from −25 to 100 °C was studied at the strain rate of 19 s−1. The failure behaviors of BFRP were recorded by a Phantom v7.3 high speed camera and analyzed using digital image correlation (DIC). The results showed that tensile strength, toughness and maximum strain increased 45.5%, 17.3% and 12.9%, respectively, as strain rate increased from 19 to 133 s−1. Moreover, tensile strength was independent of varying temperature up to 50 °C but decreased at 100 °C, which may be caused by the softening of epoxy matrix and weakening of interfaces between fibers and matrix when the glass transition temperature was exceeded.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700