Deterministic assembly of 3D mesostructures in advanced materials via compressive buckling: A short review of recent progress
详细信息    查看全文
文摘
Nearly all micro/nanosystems found in biology have function that is intrinsically enabled by hierarchical, three-dimensional (3D) designs. Compelling opportunities exist in exploiting similar 3D architectures in man-made devices for applications in biomedicine, sensing, energy storage and conversion, electronics and many other areas of advanced technology. Although a lack of practical routes to the required 3D layouts has hindered progress to date, recent advances in mechanically-guided 3D assembly have the potential to provide the required access to wide-ranging structural geometries, across a broad span of length scales, in a way that leverages the most sophisticated materials and design concepts that exist in state-of-the-art 2D microsystems. This review summaries the key concepts and illustrates their use in four major categories of 3D mesostructures: open filamentary frameworks, mixed structures of membranes/filaments (Kirigami-inspired structures), folded constructs (Origami-inspired structures) and overlapping, nested and entangled networks. The content includes not only previously published examples, but also several additional illustrative cases. A collection of 3D starfish-like and jellyfish-like structures with critical dimensions that span nearly a factor of ten million, from one hundred nanometers to nearly one meter, demonstrates the scalability of the process.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700