Time evolution of phase structure and corresponding mechanical properties of iPP/PEOc blends in the late-stage phase separation and crystallization
详细信息    查看全文
文摘
A typical toughened polymeric alloy system, isotactic polypropylene (iPP)/poly(ethylene-co-octene) (PEOc) blend, was selected in this study to investigate the influence of phase separation and crystallization on the final mechanical properties of the polyolefin blend. The time dependence of the morphology evolution of this iPP/PEOc blend with different compositions was annealed at both 200 and 170 °C and investigated with scanning electron microscopy (SEM) and phase contrast optical microscopy (PCOM). It was found that under the above two phase separation temperatures, the domain size of iPP80/PEOc-20 (PEOc-20) increases only slightly, while the structure evolution of iPP60/PEOc-40 (PEOc-40) is quite prominent. The tensile tests revealed that the mechanical properties of PEOc-20, including break strength and elongation at break decrease only in a very small amount, while those of PEOc-40 are depressed obviously with phase separation time. The decrease of interphase and a sharper boundary resulting from domain coarsening during the late-stage phase separation are responsible for the poor tensile properties. It is believed that the composition, the annealing time and the processing temperatures all contribute to the morphology evolution and the consequent mechanical properties of iPP/PEOc blends, furthermore, the crystallization procedure is another crucial factor influencing the ultimate mechanical properties of the investigated blends.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700