Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes
详细信息    查看全文
文摘
Cadmium contamination in rice grains is one of the important issues in Asian countries. We have developed a novel bio-remediation system based on the symbiosis between leguminous plant and genetically engineered rhizobia. We designed two types of recombinant rhizobia, carrying two genes, synthetic tetrameric metallothionein (MTL4) and cDNA encoding phytochelatin synthase from Arabidopsis thaliana (AtPCS). The MTL4 and AtPCS genes were transferred to Mesorhizobium huakuii subsp. rengei B3, which can infect and form nodules on Chinese milk vetch, Astragalus sinicus. The two genes were fused to the nolB or nifH promoter, which generated nodule specific expression of these genes in strain B3. The two recombinant strains, B3(pMPnolBMTL4nifHPCS) and B3::nifHMTL4(pMPnifHPCS), showed 25 and 12-fold increase in Cd concentration, in the free-living cells, respectively. When these recombinant strains established the symbiotic relationship with A. sinicus, the symbionts increased Cd accumulation in nodules by two-fold in hydroponic culture. The expression of the both MTL4 and AtPCS genes showed additive effect on cadmium accumulation in nodules. We also applied these recombinant bacteria to rice paddy soil polluted with Cd (1 mg kg−1 dry weight soil). The accumulation of Cd increased not only in nodules but also in the roots of A. sinicus infected by the recombinant rhizobia. The accumulation of Cd in the plant roots infected by B3(pMPnolBMTL4nifHPCS) achieved three-fold than that by the wild-type B3. After two months of cultivation of the symbiont, a maximum of 9 % of Cd in paddy soil was removed. Thus, the symbiosis will be useful in phytoremediation for heavy metals.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700