EEG and Neuronal Activity Topography analysis can predict effectiveness of shunt operation in idiopathic normal pressure hydrocephalus patients
详细信息    查看全文
文摘
Idiopathic normal pressure hydrocephalus (iNPH) is a neuropsychiatric syndrome characterized by gait disturbance, cognitive impairment and urinary incontinence that affect elderly individuals. These symptoms can potentially be reversed by cerebrospinal fluid (CSF) drainage or shunt operation. Prior to shunt operation, drainage of a small amount of CSF or 鈥淐SF tapping鈥?is usually performed to ascertain the effect of the operation. Unfortunately, conventional neuroimaging methods such as single photon emission computed tomography (SPECT) and functional magnetic resonance imaging (fMRI), as well as electroencephalogram (EEG) power analysis seem to have failed to detect the effect of CSF tapping on brain function. In this work, we propose the use of Neuronal Activity Topography (NAT) analysis, which calculates normalized power variance (NPV) of EEG waves, to detect cortical functional changes induced by CSF tapping in iNPH. Based on clinical improvement by CSF tapping and shunt operation, we classified 24 iNPH patients into responders (N = 11) and nonresponders (N = 13), and performed both EEG power analysis and NAT analysis. We also assessed correlations between changes in NPV and changes in functional scores on gait and cognition scales before and after CSF tapping. NAT analysis showed that after CSF tapping there was a significant decrease in alpha NPV at the medial frontal cortex (FC) (Fz) in responders, while nonresponders exhibited an increase in alpha NPV at the right dorsolateral prefrontal cortex (DLPFC) (F8). Furthermore, we found correlations between cortical functional changes and clinical symptoms. In particular, delta and alpha NPV changes in the left-dorsal FC (F3) correlated with changes in gait status, while alpha and beta NPV changes in the right anterior prefrontal cortex (PFC) (Fp2) and left DLPFC (F7) as well as alpha NPV changes in the medial FC (Fz) correlated with changes in gait velocity. In addition, alpha NPV changes in the right DLPFC (F8) correlated with changes in WMS-R Mental Control scores in iNPH patients. An additional analysis combining the changes in values of alpha NPV over the left-dorsal FC (鈭哸lpha-F3-NPV) and the medial FC (鈭哸lpha-Fz-NPV) induced by CSF tapping (cut-off value of 鈭哸lpha-F3-NPV + 鈭哸lpha-Fz-NPV = 0), could correctly identified 鈥渟hunt responders鈥?and 鈥渟hunt nonresponders鈥?with a positive predictive value of 100% (10/10) and a negative predictive value of 66% (2/3). In contrast, EEG power spectral analysis showed no function related changes in cortical activity at the frontal cortex before and after CSF tapping. These results indicate that the clinical changes in gait and response suppression induced by CSF tapping in iNPH patients manifest as NPV changes, particularly in the alpha band, rather than as EEG power changes. Our findings suggest that NAT analysis can detect CSF tapping-induced functional changes in cortical activity, in a way that no other neuroimaging methods have been able to do so far, and can predict clinical response to shunt operation in patients with iNPH.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700