Fe:ZnSe semiconductor nanocrystals: Synthesis, surface capping, and optical properties
详细信息    查看全文
文摘
Water-soluble Fe-doped ZnSe (Fe:ZnSe) nanocrystals (NCs) were synthesized by aqueous synthesis approach using thioglycolic acid (TGA) as capping agent. The undoped ZnSe and Fe:ZnSe NCs were well retained in the zinc blende structure, and the Fe dopants were well doped into the ZnSe NCs, as confirmed by X-ray photoelectron spectroscopy (XPS). The lattice constant of Fe:ZnSe NCs decreases slightly by the introduction of Fe, and Fe:ZnSe NCs exhibit a uniform size distribution with average grain size of 5 nm. The thioglycolic acid (TGA) was successfully capped on the surface of Fe:ZnSe NCs, confirmed by Fourier-transform-infrared (FT-IR) spectroscopy. The absorption edges of pure ZnSe and Fe:ZnSe NCs are blue-shifted compared to that of corresponding bulk ZnSe, indicating the quantum confinement effect, and the absorption edge of Fe:ZnSe NCs shows a slightly red shift with respect to the pure ZnSe NCs. The as-prepared Fe:ZnSe NCs exhibits an emission peak at 425 nm, and the photoluminescence (PL) intensity of the NCs has the maximum value when the Fe-doping concentration reaches 1.0 at % . It is of interest to note that the concentration quenching effect appears when the Fe-doping concentration is larger than 10.0 at % , and the underlying physical mechanisms were discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700