Identification of metabolites of deoxyschizandrin in rats by UPLC-Q-TOF-MS/MS based on multiple mass defect filter data acquisition and multiple data processing techniques
详细信息    查看全文
文摘
Deoxyschizandrin is an active lignin ingredient originating from Schisandra chinensis (Turcz.) Baill or Schisandrae Sphenantherae Fructus. In the present study, a novel and efficient strategy was developed for the in vivo screening and identification of deoxyschizandrin metabolites using ultra high performance liquid chromatography combined with triple TOF mass spectrometry (UPLC-TOF/MS/MS). This strategy was characterized by the following: a novel and unique multiple mass defect filter (MMDF) combined with an on-line data acquisition method that is dependent on dynamic background subtraction (DBS) was developed to trace all of the probable metabolites of deoxyschizandrin. The MMDF and DBS methods could trigger an IDA scan for the low-level metabolites that are masked by background noise and endogenous components. A combination of data processing methods including extracted ion chromatography (XIC), mass defect filtering (MDF), product ion filtering (PIF) and neutral loss filtering (NLF) were employed to identify the metabolites of deoxyschizandrin. Next, the structures of the metabolites were elucidated based on an accurate mass measurement, the fragmentation patterns of the parent drug and relevant drug bio-transformation knowledge. Finally, an important parameter Clog P was used to estimate the retention time of isomers. Based on the proposed strategy, 51 metabolites (including 49 phase I and 2 phase II metabolites) were identified in rats after the oral administration of deoxyschizandrin. Among these metabolites, 41 metabolites were characterized in the rat urine, and 28 metabolites were identified in the rat bile. The results indicated that oxidization was the main metabolic pathway and that the methoxy group and the biphenyl cyclooctene were the metabolic sites. Conjugation with sulfate and cysteine groups produced two phase-II metabolites. This study firstly reported the description of deoxyschizandrin metabolism in vivo. This study provided a practical strategy for rapidly screening and identifying metabolites, and this methodology can be widely applied for the structural characterization of the metabolites of other compounds.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700