Electronic structure of anode interface with molybdenum oxide buffer layer
详细信息    查看全文
文摘
The electronic structure at the α-NPD/MoO3/Au interfaces has been investigated with ultraviolet photoemission spectroscopy (UPS), X-ray photoemission spectroscopy (XPS) and inverse photoemission spectroscopy (IPES). It was found that the MoO3 layer contains some number of oxygen vacancies prior to any treatment and gap states are induced by the partial filling of the unoccupied 4d orbitals of molybdenum atoms neighboring oxygen vacancies. The α-NPD thickness dependence of XPS spectra for the α-NPD/MoO3 system clearly showed that molybdenum atoms at the surface of the MoO3 film were reduced by α-NPD deposition through the charge-transfer interaction between the adsorbed α-NPD and the molybdenum atoms. This reduction at the α-NPD/MoO3 interface formed a large interface dipole layer up to −1.79 eV. The deduced energy-level diagram for the α-NPD/MoO3/Au interfaces describes the energy-level matching that explains well the significant reduction in the hole-injection barrier due to the MoO3 buffer layer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700