n-Type redox behaviors of polybithiophene and its implications for anodic Li and Na storage materials
详细信息    查看全文
文摘
A polybithiophene-carbon (PBT/C) composite was synthesized by ball-milling chemically polymerized polybithiophene with carbon nanofibers and found to have n-type redox properties with exceptional reversible capacity and cycling stability. The experimental results demonstrated that the as-synthesized (PBT/C) composite can realize a total two-electron redox capacity of ¡«850 mAh g?1 with half of the capacity delivered at a low potential plateau of 1.25 V in Li+ electrolyte, possibly serving as a high capacity organic anode for Li-ion batteries. More significantly, the PBT/C composite can also be cycled in Na+-electrolyte, delivering a reversible redox capacity of ¡«500 mAh g?1 through the doping-dedoping reactions of Na+ ions into/from the polymer chains. These n-type redox performances suggest a possible application of the polymers of this type as high capacity and cycling-stable anodes for Li-ion and Na-ion batteries.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700