Inverted colloidal crystal scaffolds with induced pluripotent stem cells for nerve tissue engineering
详细信息    查看全文
文摘
The development of biomaterials for regenerating neurons from induced pluripotent stem (iPS) cells is crucial to the potential therapy for traumatic injury to nervous system. This study aims to guide differentiation of iPS cells into neuron-lineage cells in inverted colloidal crystal (ICC) scaffolds containing alginate, poly(¦Ã-glutamic acid), and surface CSRARKQAASIKVAVSADR (peptide). The differentiation of iPS cells in ICC constructs was characterized by staining of embryonic and neuronal markers. The results indicated that hexagonal crystals of polystyrene microspheres shaped hydrogels into ICC scaffolds with interconnected pores. CSRARKQAASIKVAVSADR slightly enhanced the adhesion of iPS cells in ICC constructs and yielded no variation in the viability of iPS cells. Cultured ICC constructs with CSRARKQAASIKVAVSADR reduced the expression of stage-specific embryonic surface antigen-1 and raised the expression of ¦Â III tubulin of differentiating iPS cells. The induction with CSRARKQAASIKVAVSADR in ICC topography can improve the differentiation of iPS cells toward neurons for nerve tissue engineering.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700