A possible upgrade of FLASH for harmonic lasing down to 1.3 nm
详细信息    查看全文
文摘
We propose the 3rd harmonic lasing in a new FLASH undulator as a way to produce intense, narrow-band, and stable SASE radiation down to 1.3 nm with the present accelerator energy of 1.25 GeV. To provide optimal conditions for harmonic lasing, we suggest to suppress the fundamental with the help of a special set of phase shifters. We rely on the standard technology of gap-tunable planar hybrid undulators, and choose the period of 2.3 cm and the minimum gap of 0.9 cm; total length of the undulator system is 34.5 m. With the help of numerical simulations we demonstrate that the 3rd harmonic lasing at 1.3 nm provides peak power at a gigawatt level and the narrow intrinsic bandwidth, 0.1 % (FWHM). Pulse duration can be controlled in the range of a few tens of femtoseconds, and the peak brilliance reaches the value of 1031 photons/(s mrad2 mm2 0.1 % BW). With the given undulator design, a standard option of lasing at the fundamental wavelength to saturation is possible through the entire water window and at longer wavelengths. In this paper we briefly consider additional options such as polarization control, bandwidth reduction, self-seeding, X-ray pulse compression, and two-color operation. We also discuss possible technical issues and backup solutions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700