Complex nonlinear dynamics in fractional and integer order memristor-based systems
详细信息    查看全文
文摘
In this paper, a fractional-order (and an integer-order) memristor-based system with the flux-controlled memristor characterized by smooth quadratic nonlinearity is proposed and detailed dynamical analysis is carried out by means of theoretical and numerical methods. To be more specific, stability of each equilibrium point in the equilibrium set is analyzed for the integer-order memristive system. Meanwhile, dynamical behavior depending on the initial states of the memristor is investigated and dynamical bifurcation depending on the slope of the memductance function is also considered. The bifurcation analysis is verified by numerical methods, including phase portraits, bifurcation diagrams, Lyapunov exponents spectrum, and Poincaré mappings. For the fractional-order case, based on the fractional-order stability theory, stability analysis is carried out just for a certain equilibrium point. Moreover, bifurcation behavior depending on the incommensurate order is discussed by virtue of numerical methods based on the Adams–Bashforth–Moulton algorithm. This paper indicates how the fractional order model and the initial state of the memristor extend the dynamical behaviors of the traditional chaotic systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700