Involvement of H-Ras and reactive oxygen species in proinflammatory cytokine-induced matrix metalloproteinase-13 expression in human articular chondrocytes
详细信息    查看全文
文摘
Proinflammatory cytokines such as interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) enhance degradation of cartilage-specific, type II collagen by matrix metalloproteinase-13 (MMP-13). We investigated the previously unknown role of H-Ras and reactive oxygen species (ROS) in the cytokine induction of MMP-13 gene expression in human articular chondrocytes by using pharmacological inhibitors, RNA interference (RNAi) and antioxidants. Manumycin A, an inhibitor of H-Ras farnesylation by farnesyltransferase, suppressed IL-1β- and TNF-α-induced MMP-13 mRNA and protein expression. Small interfering RNA (siRNA)-mediated H-Ras silencing down-regulated MMP-13 mRNA and protein induction by IL-1β and TNF-α. Nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase/NOX) inhibitor, diphenyleneiodonium (DPI) suppressed cytokine-induced MMP-13 expression and superoxide production. Apocynin, another NOX inhibitor, also diminished MMP-13 induction. Deoxyglucose an antimetabolite of glucose metabolism reduced MMP-13 increase. Role of NOX-mediated ROS production was reaffirmed by the observation that the antioxidants, trolox, nordihydroguaiaretic acid (NDGA), quercetin and resveratrol downregulated cytokine-induced MMP-13 mRNA and protein expression. These results provide strong pharmacological and genetic evidence for the implication of H-Ras and NADPH oxidase-generated superoxide production in MMP-13 gene regulation by IL-1β and TNF-α. These proteins could be potentially targeted for therapeutic inhibition of MMP-13-driven cartilage erosion by using H-Ras and NOX inhibitors and antioxidants.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700