Amino-modification and successive electrochemical reduction of graphene oxide for highly sensitive electrochemical detection of trace Pb2+
详细信息    查看全文
文摘
Both synthesis method and heteroatom doping could tailor graphene properties and promise its practical application. Here, a facile electrolytic route was developed to prepare amino-functionalized graphene, which could be directly used to build chemical sensor electrode. In this method, graphene oxide (GO) was electrolyzed in ethylenediamine aqueous solution to induce ammonization and electrochemical reduction successively. The unique chemical structure of ammoniated reduced GO (AErGO) strongly increased the chelation between electrode surface and Pb2+, and provided plenty active sites for electrochemical redox. Therefore, AErGO exhibits good electrical conductivity and high electrocatalytic activities, which ensures high selectivity, low detection limit (0.0924 μg L−1 at S/N = 3) and ultra wide linear range (0.5–350 μg L−1) during the Pb2+ detection. This simple and effective route can also be extended in the preparation of S-doping or S, N-dual doping graphene materials with potential applications in chemical sensor, electrochemical catalysis, and energy conversion or storage.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700