Comparison of the activity stabilities of nanosized and microsized zeolites based Fe-Mo/HZSM-5 catalysts in the non-oxidative CH4 dehydroaromatization under periodic CH4-H2 switching operation at 1073 K
详细信息    查看全文
文摘
The activities and stabilities of three series of Fe-modified 5 % Mo/HZSM-5 catalysts based on a nano-zeolite and two micro-zeolites in the fixed-bed non-oxidative CH4 dehydroaromatization reaction were compared at the condition of 1 atm, 1073 K and 10,000 mL/g/h under periodic CH4-H2 switch operation mode. The activity evaluation tests showed that 0.1-2 wt % Fe co-impregnated modification improves remarkably the benzene formation activity stability of the nanosized zeolite-based catalyst while it had little influence on those of the two microsized zeolites-based catalysts. Then, another series of Fe-modified 5 % Mo/HZSM-5 catalysts based on a ball-milled, nanosized zeolite sample were prepared and tested at the same condition. The results confirmed that the maximum improving effect of Fe modification achieves at a properly small Fe addition of 0.5 wt % . SEM observation of all fresh and spent catalyst samples revealed that carbon nanotubes formed over all Fe-modified catalysts but disagglomeration of zeolite agglomerates caused by carbon nanotube formation and growth occurred only to the nano-zeolite based, Fe-modified catalysts. Further, TPO measurement of all spent samples revealed that the amounts of accumulated coke per unit external surface area in the spent nano-zeolite based catalysts were much smaller than those in the micro-zeolite based catalysts. Moreover, well consistent BET measurement confirmed that all nano-zeolite based, Fe-modified catalysts exhibited a similarly smaller degree of decrease in their microporosity than all micro-zeolite based catalysts. All these suggest that the preferential coke formation on the external surfaces and/or in the outer layers of zeolite agglomerates took place under the test condition and enhanced the deactivation of the nano-zeolite based, Fe-unmodified catalysts, and that the disagglomeration of zeolite agglomerates caused by Fe-induced carbon nanotube formation and growth in the reaction was the origin of Fe modification improving the activity stability of the nano-zeolite based Mo/HZSM-5 catalysts. The improvement mechanism is discussed in detail in the article.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700