A Comparison of Deterministic, Reliability-Based Topology Optimization under Uncertainties
详细信息    查看全文
文摘
Reliability and optimization are two key elements for structural design. The reliability-based topology optimization (RBTO) is a powerful and promising methodology for finding the optimum topologies with the uncertainties being explicitly considered, typically manifested by the use of reliability constraints. Generally, a direct integration of reliability concept and topology optimization may lead to computational difficulties. In view of this fact, three methodologies have been presented in this study, including the double-loop approach (the performance measure approach, PMA) and the decoupled approaches (the so-called Hybrid method and the sequential optimization and reliability assessment, SORA). For reliability analysis, the stochastic response surface method (SRSM) was applied, combining with the design of experiments generated by the sparse grid method, which has been proven as an effective and special discretization technique. The methodologies were investigated with three numerical examples considering the uncertainties including material properties and external loads. The optimal topologies obtained using the deterministic, RBTOs were compared with one another; and useful conclusions regarding validity, accuracy and efficiency were drawn.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700