The pure rotational spectrum of ZnO in the X1Σ+ and a3Πi states
详细信息    查看全文
文摘
The pure rotational spectrum of ZnO has been measured in its ground X1Σ+ and excited a3Πi states using direct-absorption methods in the frequency range 239–514 GHz. This molecule was synthesized by reacting zinc vapor, generated in a Broida-type oven, with N2O under DC discharge conditions. In the X1Σ+ state, five to eight rotational transitions were recorded for each of the five isotopologues of this species (64ZnO, 66ZnO, 67ZnO, 68ZnO, and 70ZnO) in the ground and several vibrational states (v = 1–4). Transitions for three isotopologues (64ZnO, 66ZnO, and 68ZnO) were measured in the a3Πi state for the v = 0 level, as well as from the v = 1 state of the main isotopologue. All three spin–orbit components were observed in the a3Πi state, each exhibiting splittings due to lambda-doubling. Rotational constants were determined for the X1Σ+ state of zinc oxide. The a3Πi state data were fit with a Hund’s case (a) Hamiltonian, and rotational, spin–orbit, spin–spin, and lambda-doubling constants were established. Equilibrium parameters were also determined for both states. The equilibrium bond length determined for ZnO in the X1Σ+ state is 1.7047 Å, and it increases to 1.8436 Å for the a excited state, consistent with a change from a π4 to a π3σ1 configuration. The estimated vibrational constants of ωe  738 and 562 cm−1 for the ground and a state agreed well with prior theoretical and experimental investigations; however, the estimated dissociation energy of 2.02 eV for the a3Πi state is significantly higher than previous predictions. The lambda-doubling constants suggest a low-lying 3Σ state.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700