The Riemann tensor and the Bianchi identity in 5D space-time
详细信息    查看全文
文摘
The initial assumption of theories with extra dimension is based on the efforts to yield a geometrical interpretation of the gravitation field. In this paper, using an infinitesimal parallel transportation of a vector, we generalize the obtained results in four dimensions to five-dimensional space–time. For this purpose, we first consider the effect of the geometrical structure of 4D space–time on a vector in a round trip of a closed path, which is basically quoted from chapter three of Ref. [5]. If the vector field is a gravitational field, then the required round trip will lead us to an equation which is dynamically governed by the Riemann tensor. We extend this idea to five-dimensional space–time and derive an improved version of Bianchi's identity. By doing tensor contraction on this identity, we obtain field equations in 5D space–time that are compatible with Einstein's field equations in 4D space–time. As an interesting result, we find that when one generalizes the results to 5D space–time, the new field equations imply a constraint on Ricci scalar equations, which might be containing a new physical insight.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700