Enhanced cytokinin degradation in leaf primordia of transgenic Arabidopsis plants reduces leaf size and shoot organ primordia formation
详细信息    查看全文
文摘
The plant hormone cytokinin is a key morphogenic factor controlling cell division and differentiation, and thus the formation and growth rate of organs during a plant's life cycle. In order to explore the relevance of cytokinin during the initial phase of leaf primordia formation and its impact on subsequent leaf development, we increased cytokinin degradation in young shoot organ primordia of Arabidopsis thaliana by expressing a cytokinin oxidase/dehydrogenase (CKX) gene under control of the AINTEGUMENTA (ANT) promoter. The final leaf size in ANT:CKX3 plants was reduced to 27 % of the wild-type size and the number of epidermal cells was reduced to 12 % of the wild type. Kinematic analysis revealed that cell proliferation ceased earlier and cell expansion was accelerated in ANT:CKX3 leaves, demonstrating that cytokinin controls the duration of the proliferation phase by delaying the onset of cell differentiation. The reduction of the cell number was partially compensated by an increased cell expansion. Interestingly, ANT:CKX3 leaf cells became about 60 % larger than those of 35S:CKX3 leaves, indicating that cytokinin has an important function during cell expansion as well. Furthermore, ANT:CKX3 expression significantly reduced the capacity of both the vegetative as well as the generative shoot apical meristem to initiate the formation of new leaves and flowers, respectively. We therefore hypothesize that the cytokinin content in organ primordia is important for regulating the activity of the shoot meristem in a non-autonomous fashion.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700