Transformation of multi-walled carbon nanotubes to amorphous nano-spheres, micron-size rods and flakes by oxidative sulfation reaction
详细信息    查看全文
文摘
This study unveils a chemical functionalization provoked phase transformation in the naphthalene modified multi-walled carbon nanotubes (MWCNTs) and the associated formation of amorphous carbonaceous particles of various size and morphology. Functionalized nanotubes were prepared by a sulfonation-oxidization and a highly corrosive oxidative sulfation reaction then characterized by means of thermogravimetry/mass spectrometry, X-ray photoelectron spectroscopy, scanning and transmission electron microscopy and Raman spectroscopy. In spite of the small change in the composition of sulfonation and sulfation reaction mixtures, conventional sulfonation with oleum resulted in lower sulfonation and higher oxidative conversion of MWCNTs accompanied with a mediated exohedral amorphization of the nanotubes, induced by the yield of sp3 hybridization defect introduction. On the other hand, the newly applied oxidative sulfation reaction provided severe oxidative etching, cutting and shortening of MWCNTs with a subsequent high conversion of sulfate derivatisation of oxidized functionalities, which induced complete collapse and phase transformation of the nanotubes. Amorphization and phase transformation of oxidative sulfated MWCNTs have led to the formation of highly dispersed nano- and micron-size amorphous carbon spheres, rods and flake-like structures. Water based colloidal systems of excellent stability were prepared from the oxidative sulfated carbonaceous material. Consequently, the employed highly corrosive sulfation reaction is capable to provide highly functionalized carbonaceous nano and micro-size particles from MWCNTs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700