Multiple Resistance and Biochemical Mechanisms of Dicofol Resistance in Tetranychus urticae
详细信息    查看全文
文摘
A field colony of Tetranychus urticae (Koch) resistant to dicofol was selected with dicofol successively for 20 generations to produce the DR-20 strain. Resistance and multiple resistance levels of the DR-20 strain to 15 acaricides were determined using a spray bioassay. The DR-20 strain was extremely resistant to dicofol [resistance ratio (RR), 465]. The strain showed extremely strong resistance to acrinathrin (RR, 373) and benzoximate (RR, 197) and strong resistance to bromopropylate (RR, 136), fenbutatin oxide (RR, 65), fenpropathrin (RR, 70), fenpyroximate (RR, 68), and pyridaben (RR, 63). A RR of 11–29 was observed with abamectin, fenazaquin, milbemectin, propagite, and tebufenpyrad. The DR-20 strain exhibited low levels of resistance (RR<3) to azocyclotin and chlorfenapyr. In comparative assays with detoxifying enzymes, the DR-20 strain showed 4.7-fold higher activity in p-nitroanisole-O-demethylation and 1.6-fold higher activities in both α- and β-naphthyl acetate hydrolysis. Synergist experiments with different metabolic inhibitors revealed that piperonyl butoxide, iprobenfos, triphenyl phosphate, and 4, 4-dichloro-α-methyl benzhydrol had little or no synergistic activity in the susceptible and DR-20 strains. These results suggest that employment of certain acaricides with little multiple resistance will be useful for the management of dicofol resistance in the field.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700