MLSDQ based on RBFs for the free vibrations of laminated composite doubly-curved shells
详细信息    查看全文
文摘
A Moving Least Squares Differential Quadrature (MLSDQ) method based on Radial Basis Functions (RBFs) is employed in this paper for solving doubly-curved shells made of composite materials. DQ method can easily approximate partial derivatives of any order by choosing proper basis functions. RBFs are functions that vary according to the radial distance from a current point and its neighborhood. The MLS method is implemented for the approximation of the shape functions used as basis functions. These shape functions depend on some weight functions that in this case are chosen as RBFs. Generally, numerical approaches based on the radial distance work very well on flat surfaces, such as plates, and on curves with constant curvature, such as spheres and cylinders, because the distance between two points can be easily measured. On the contrary, doubly-curved structures with variable radii of curvature which are defined by parametric curvilinear lines do not have a one-to-one (mutual) relationship between a curvilinear distance (defined by using curvilinear coordinates s1, s2) and the location of two points on the same surface (identified by two parameters α1, α2). Therefore, this work aims to show when it is possible to apply the MLSDQ method for solving doubly-curved laminated composite structures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700