Photomagnetism in CxCo4[Fe(CN)6](8+x)/3·n H2O Prussian blue analogues: looking for the maximum photo-efficiency
详细信息    查看全文
文摘
A family of CoFe Prussian blue analogues CxCo4[Fe(CN)6](8+x/3)(4–x)3 (x = amount of alkali cation inserted per conventional cell, C = Na, K, Rb, Cs; = [Fe(CN)6] vacancy) have been synthesized and characterized. Their photomagnetic properties have been investigated by magnetic measurements before and after irradiation and X-ray diffraction under continuous irradiation. We show that the photo-induced magnetism depends on several parameters: (i) the amount of CoIII–FeII diamagnetic excitable pairs per cell; (ii) the amount of [Fe(CN)6] vacancies, and (iii) the amount and nature of the alkali cations per cell. We evidence a discontinuity in the properties' change when the amount of alkali cation x varies, around x = 1. For x < 1, there is an excitation of diluted CoIII–FeII diamagnetic pairs in a phase mainly composed of magnetic CoII–FeIII entities within the same structural phase through a second-order continuous transformation. For x ≥ 1, the formation of domains mainly composed of CoII–FeIII* metastable magnetic pairs in a phase mainly composed of CoIII–FeII diamagnetic ones through a first-order discontinuous transition is observed. The study points out that sodium derivatives are more efficient than the others. Among them, Na1Co4[Fe(CN)6]31 is predicted to be the most efficient one. To cite this article: A. Bleuzen et al., C. R. Chimie 6 (2003).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700