Monooxorhenium(V) complexes with 222-N2S2 MAMA ligands for bifunctional chelator agents: Syntheses and preliminary in vivo evaluation
详细信息    查看全文
文摘
Targeted radiotherapy using the bifunctional chelate approach with 186/188Re(V) is challenging because of the susceptibility of monooxorhenium(V)-based complexes to oxidize in vivo at high dilution. A monoamine–monoamide dithiol (MAMA)-based bifunctional chelating agent was evaluated with both rhenium and technetium to determine its utility for in vivo applications.

Methods

A 222-MAMA chelator, 222-MAMA(N-6-Ahx-OEt) bifunctional chelator, and 222-MAMA(N-6-Ahx-BBN(7–14)NH2) were synthesized, complexed with rhenium, radiolabeled with 99mTc and 186Re (carrier added and no carrier added), and evaluated in initial biological distribution studies.

Results

An IC50 value of 2.0 ± 0.7 nM for natReO-222-MAMA(N-6-Ahx-BBN(7–14)NH2) compared to [125I]-Tyr4-BBN(NH2) was determined through competitive cell binding assays with PC-3 tumor cells. In vivo evaluation of the no-carrier added 99mTc-222-N2S2(N-6-Ahx-BBN(7–14)NH2) complex showed little gastric uptake and blockable pancreatic uptake in normal mice.

Conclusions

The 186ReO-222-N2S2(N-6-Ahx-BBN(7–14)NH2) complex showed stability in biological media, which indicates that the 222-N2S2 chelator is appropriate for chelating 186/188Re in radiopharmaceuticals involving peptides. Additionally, the in vitro cell studies showed that the ReO-222-N2S2(N-6-Ahx-BBN(7–14)NH2) complex (macroscopically) bound to PC3-tumor cell surface receptors with high affinity. The 99mTc analog was stable in vivo and exhibited pancreatic uptake in mice that was blockable, indicating BB2r targeting.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700