The BK channel accessory β1 subunit determines alcohol-induced cerebrovascular constriction
详细信息    查看全文
文摘
Ethanol-induced inhibition of myocyte large conductance, calcium- and voltage-gated potassium (BK) current causes cerebrovascular constriction, yet the molecular targets mediating EtOH action remain unknown. Using BK channel-forming (cbv1) subunits from cerebral artery myocytes, we demonstrate that EtOH potentiates and inhibits current at lower and higher than 15 μM, respectively. By increasing cbv1’s apparent -sensitivity, accessory BK β1 subunits shift the activation-to-inhibition crossover of EtOH action to <3 μM , with consequent inhibition of current under conditions found during myocyte contraction. Knocking-down KCNMB1 suppresses EtOH-reduction of arterial myocyte BK current and vessel diameter. Therefore, BK β1 is the molecular effector of alcohol-induced BK current inhibition and cerebrovascular constriction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700