Novel nanoporous MnOx (x = ∼1.75) sorbent for the removal of SO2 and NH3 made from MnC2O4·2H2O
详细信息    查看全文
文摘
In this work, nanoporous manganese oxides (MnOx) were prepared by thermal decomposition of MnC2O4·2H2O at 225 °C for 6 h in air. The manganese oxalate dihydrate precipitate was made from manganese sulfate and ammonium oxalate during ultrasonication and stirring. The physical properties of the oxalate precursors and the resulting MnOx samples were characterized with SEM, TGA–DSC, FTIR and powder XRD. The specific surface areas and porosity of MnOx were studied by single-point BET and multi-point N2 adsorption–desorption measurements. The amorphous MnOx from oxalate prepared by sonication showed a specific surface area as large as 499.7 m2/g. Dynamic SO2 and NH3 flow tests indicated that the adsorption capacity of MnOx, especially for SO2, can be increased by increased surface area. Compared to the best Mn3O4-impregnated activated carbon adsorbent, nanoporous MnOx could remove approximately three times as much SO2 and a comparable amount of NH3 per gram of adsorbent. This could lead to respirators of lower weight and smaller size which will be attractive to users.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700