Piconet construction and restructuring mechanisms for interference avoiding in bluetooth PANs
详细信息    查看全文
文摘
Bluetooth and IEEE 802.11 (Wi-Fi) are two of the most popular communication standards that define physical and MAC layers for wireless transmissions and operate on 2.4 GHz industrial scientific medical (ISM) band. To avoid the rich interference existed in ISM band, Bluetooth adopts a time-slotted frequency-hopping spread-spectrum scheme, preventing the Bluetooth device communication from being interfered for a long time on specific channel. However, the coexistence of Bluetooth and Wi-Fi in the neighborhood degrades the performance of both networks because the two wireless technologies cannot negotiate with each other. To improve the throughput of a given piconet, this paper presents two interference aware approaches. First, an interference aware piconet establishment mechanism, called IAPE, is proposed to consider the frequencies occupied by Wi-Fi and then minimize the interference from Wi-Fi transmissions, when Bluetooth and Wi-Fi coexist in the same space. To further improve the throughput of the constructed piconet, an interference aware piconet restructuring mechanism, called IAPR, is proposed. Performance study reveals that the proposed IAPE and IAPR approaches further reduce the interference between Bluetooth and Wi-Fi and thereby save the energy of Bluetooth device, improving the throughput of Bluetooth personal area networks (PANs).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700