Vectorial total generalized variation for accelerated multi-channel multi-contrast MRI
详细信息    查看全文
文摘
To develop and implement an efficient reconstruction technique to improve accelerated multi-channel multi-contrast MRI.

Theory and Methods

The vectorial total generalized variation (TGV) operator is used as a regularizer for the sensitivity encoding (SENSE) technique to improve image quality of multi-channel multi-contrast MRI. The alternating direction method of multipliers (ADMM) is used to efficiently reconstruct the data. The performance of the proposed method (MC-TGV-SENSE) is assessed on two healthy volunteers at several acceleration factors.

Results

As demonstrated on the in vivo results, MC-TGV-SENSE had the lowest root-mean-square error (RMSE), highest structural similarity index, and best visual quality at all acceleration factors, compared to other methods under consideration. MC-TGV-SENSE yielded up to 17.3% relative RMSE reduction compared to the widely used total variation regularized SENSE. Furthermore, we observed that the reconstruction time of MC-TGV-SENSE is reduced by approximately a factor of two with comparable RMSEs by using the proposed ADMM-based algorithm as opposed to the more commonly used Chambolle–Pock primal-dual algorithm for the TGV-based reconstruction.

Conclusion

MC-TGV-SENSE is a better alternative than the existing reconstruction methods for accelerated multi-channel multi-contrast MRI. The proposed method exploits shared information among the images (MC), mitigates staircasing artifacts (TGV), and uses the encoding power of multiple receiver coils (SENSE).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700