Multifunctional thermoresponsive designer peptide hydrogels
详细信息    查看全文
文摘
We report the synthesis and characterization of multifunctional peptides comprised of a hydrogel forming β-sheet peptide segment and a matrix metalloproteinase 2 substrate containing a propargylglycinyl linker that is further derivatized with an RGD peptide sequence m>viam> “click” chemistry. In contrast to currently known systems, these multifunctional peptides formed gels that are stiffer than those formed by their respective precursors. All the peptides showed reversible thermoresponsive properties, which render them as suitable lead systems for a variety of possible biomedical applications.

Statement of Significance

In general, it has been frequently observed that chemical biofunctionalization of peptide hydrogels adversely affects peptide assembly, hydrogel formation or mechanical properties, which severely compromises their application. A functionalization protocol that allows to generate peptide hydrogels that display significantly improved mechanical properties over their unfunctionalized counterparts is reported in this work. These peptides also showed thermoresponsive viscoelastic characteristics, including an example of a peptide hydrogel that displays lower critical solution temperature behaviour.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700