Nox1 is involved in p53 deacetylation and suppression of its transcriptional activity and apoptosis
详细信息    查看全文
文摘
HIPK2 is a stress-induced kinase and a transcriptional corepressor that functionally cooperates with p53 to suppress cancer. Activation of the p53 proapoptotic function requires a cascade of phosphorylations and acetylations, and HIPK2 takes part in both modifications in that it phosphorylates p53 Ser46 and induces p53 Lys382 acetylation. Here, to further investigate the role of HIPK2 in p53 activation, we started with the finding that HIPK2 inhibition upregulated Nox1, a homolog of the catalytic subunit of the superoxide-generating NADPH oxidase, involved in tumor progression and ROS production. We found that Nox1 inhibited p53 Lys382 acetylation, which is a target of SIRT1 deacetylase, and impaired p53 proapoptotic transcriptional activity. By the use of either small interfering RNAs to target SIRT1 or the SIRT1 inhibitor nicotinamide we found that Nox1-dependent inhibition of p53 transcriptional activity was SIRT1-dependent. Thus, Nox1 was unable to inhibit p53 when coexpressed with a SIRT1 deacetylase-defective mutant (SIRT1HY), suggesting a link between Nox1 and SIRT1 activity. Finally, recovery of HIPK2 function downregulated Nox1 expression with rescue of p53 Lys382 acetylation and p53 activity. Together, our findings indicate that Nox1 upregulation may activate SIRT1 and inhibit p53 and that Lys382 is important for p53 proapoptotic function.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700