Dissipativity-based decentralized control of interconnected nonlinear chemical processes
详细信息    查看全文
文摘
This paper presents an approach, based on dissipative systems theory, to the analysis and control design of interconnected nonlinear processes. The objective is to design distributed feedback controllers to achieve plant-wide stability. Extensions of classical results on the stability of large-scale interconnected systems lead to input-output dissipativity constraints for each subsystems, encoded as supply rates from input to output interconnecting ports. For each subsystem, a parameterized nonlinear feedback controller is designed using nonlinear dissipative inequalities to ensure that the aforementioned dissipativity constraints are met in closed-loop. One focus of this paper is the design of domination-based nonlinear feedback controllers to meet the above interconnection constraints. This paper also presents new results on the construction of storage functions for control affine systems, as a generalization of physics-based approaches to dissipative systems theory. Control of interconnected chemical reactors with a recycle stream is presented throughout the paper to demonstrate the proposed construction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700