Microarray analysis of the transcriptional responseto single or multiple doses of ionizing radiation in human subcutaneous fibroblasts
详细信息    查看全文
文摘

Background and Purpose

Transcriptional profiling of fibroblasts derived from breast cancer patients might improve our understanding of subcutaneous radiation-induced fibrosis. The aim of this study was to get a comprehensive overview of the changes in gene expression in subcutaneous fibroblast cell lines after various ionizing radiation (IR) schemes in order to provide information on potential targets for prevention and to suggest candidate genes for SNP association studies aimed at predicting individual risk of radiation-induced morbidity.

Patients and methods

Thirty different human fibroblast cell lines were included in the study, and two different radiation schemes; single dose experiments with 3.5 Gy or fractionated with 3×3.5 Gy. Expression analyses were performed on unexposed and exposed cells after different time points. The IR response was analyzed using the statistical method Significance Analysis of Microarrays (SAM).

Results

While many of the identified genes were involved in known IR response pathways like cell cycle arrest, proliferation and detoxification, a substantial fraction of the genes were involved in processes not previously associated with IR response. Of particular interest is genes involved in ECM remodelling, Wnt signalling and IGF signalling. Many of the genes were identified after a single dose, but transcriptional changes in genes related to ROS scavenging and ECM remodelling were most profound after a fractionated scheme.

Conclusions

We have identified a number of IR response pathways in fibroblasts derived from breast cancer patients. Besides previously identified pathways, we have identified new pathways and genes that could be relevant for prevention and intervention studies of subcutaneous radiation-induced fibrosis as well as being candidates for SNP association studies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700