An improved differential evolution algorithm with fitness-based adaptation of the control parameters
详细信息    查看全文
文摘
Differential Evolution (DE) is arguably one of the most powerful stochastic real-parameter optimization algorithms of current interest. DE operates through the similar computational steps as employed by a standard Evolutionary Algorithm (EA). However, unlike the traditional EAs, the DE-variants perturb the current-generation population members with the scaled differences of randomly selected and distinct population members. Therefore, no separate probability distribution has to be used, which makes the scheme self-organizing in this respect. Scale Factor (F) and Crossover Rate (Cr) are two very important control parameters of DE since the former regulates the step-size taken while mutating a population member in DE and the latter controls the number of search variables inherited by an offspring from its parent during recombination. This article describes a very simple yet very much effective adaptation technique for tuning both F and Cr, on the run, without any user intervention. The adaptation strategy is based on the objective function value of individuals in the DE population. Comparison with the best-known and expensive variants of DE over fourteen well-known numerical benchmarks and one real-life engineering problem reflects the superiority of proposed parameter tuning scheme in terms of accuracy, convergence speed, and robustness.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700