Impact of Mn-O-O-Mn superexchange pathways in a honeycomb lattice Mn oxide with small charge-transfer energy
详细信息    查看全文
文摘
We investigated the electronic structure of layered Mn oxide Bi3Mn4O12(NO3) with a Mn honeycomb lattice by x-ray absorption spectroscopy and model calculations. The valence of Mn was determined to be with a small charge-transfer energy of 1 eV. The values of (J1, J2, J3, Jc, Jc1, and Jc2) obtained by unrestricted Hartree-Fock calculations on Mn 3d-O 2p lattice models show that intra-layer second and third neighbor superexchange interactions J2 and J3 as well as inter-layer superexchange interactions Jc, Jc1, and Jc2 are enhanced due to Mn-O-O-Mn pathways, which are activated by the smallness of charge-transfer energy. The present analysis indicates that the ferromagnetic Jc1 and antiferromagnetic Jc2 are responsible to the antiferromagnetic inter-layer coupling and that the intra-layer exchange interactions with the ferromagnetic J2 and antiferromagnetic J3 have no frustration effect.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700